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1. Introduction 

 

There is a growing interest in testing students formatively during the course of teaching in order to determine skills 

that students do or do not possess. Information about skill mastery or nonmastery can help tailor instruction to needs 

of the students. A useful tool for formative assessment is cognitive diagnostic assessment (CDA).  CDA measures 

the specific knowledge structures and the processing skills that examinees possess to provide information about the 

cognitive strengths and weaknesses of examinees (Leighton & Gierl, 2007). The cognitive diagnostic models 

(CDMs) that CDA uses to relate the latent skills to observed behavior (tasks) require a Q-matrix having elements qjk 

for J items and K attributes (Tatsuoka, 1983).  

 

The Q-matrix embodies the design of the assessment instrument in use and in essence determines the quality of the 

resulting diagnostic information (Rupp and Templin, 2008). Therefore, test developers should ensure that the 

necessary procedures and expertise in cognitive theory are used in determining the Q-matrix for a diagnostic test. In 

this study, we propose components analysis as an exploratory technique for finding the Q-matrix in addition to using 

theory. Studies such as Templin and Henson (2006); and Henson, Templin, & Douglas (2007) have discussed factor 

analysis for cognitive diagnosis but not for Q-matrix development. Liu, Douglas & Henson (2009) address the use of 

factor analysis for Q-matrix development as discussed in Henson and Templin (2007), indicating that factor analysis 

can give a reasonable solution when the Q-matrix is not too complex. One study has examined a method for 

validating the Q-matrix (de la Torre, 2008) and so more studies are needed. 

 

As such, the purpose of this study was to investigate components analysis, an exploratory technique that can be used 

to find the Q-matrix of a cognitive diagnostic test (when the number of skills is unknown) in data that satisfy the 

DINA (Deterministic Input Noisy “And”) model of Haertel (1989). Extension of the proposed analysis to other 

conjunctive models such as the reduced version of the RUM model of Hartz (2002) is straightforward.  

 

2. Method 

 

Data were simulated using the DINA model (see the section on cognitive diagnostic model below for details). 

Because the Q-matrix is considered fixed, the Q-matrix was designed to measure 3 skills with 21 items. At least 2
K 

-
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1 items are required to measure K skills. Each skill level combination in our Q-matrix was measured by at least four 

items but no items measured all three skills. The item parameters, sj and gj, were simulated from a random uniform 

distribution, sj ~U (.02, .05) and gj ~ U (.05, .25) Examinees’ latent ability vectors, αi, were simulated from a probit 

model having underlying latent variables that are multivariate normal with mean vector zero and correlations 

between the skills fixed at .50; MVN (μ, Σ) where μ is the mean vector and Σ is the correlation matrix. The 

proportion of the population assumed to have mastered the attributes, pk, was fixed at 0.50. These parameter 

specifications are commonly used in published articles. The data were simulated in R, freely available software. In 

addition to simulated data real data was also analyzed. The real data used in the analysis were the fraction 

subtraction data collected by Dr. Kikumi Tatsuoka (Tatsuoka, 1983). The data were obtained from the Royal 

Statistical Society website, http://www.blackwellpublishing.com/rss/Volumes/Cv51p3.htm and are comprised of 

dichotomously-scored responses to 20 fraction subtraction test items from 536 middle school students. 

 

2.1 Cognitive Diagnostic Model 

 

Define Xij as a binary indicator of whether examinee i performed task j correctly; qjk as a binary indicator of whether 

attribute k is relevant for task j; and αik as a binary indicator of whether examinee i possesses attribute k. Then, the 

DINA model has the item response function (IRF), 
ijij
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The DINA IRF can be rewritten into a principal components form. Due to the deterministic nature of the principal 

components analysis, the component form is the same as the factor model without the error term. Specifically, if Zij 

is the z-score of person i on variable j, the scalar form of the factor model is 
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where jm  is the loading of item j on factor m, imf is the factor score of person i on factor m, and ije  is the error 

term. It follows that the expectation of ijZ is the component form, 

 

                     (3) 

 

where, jm  is the loading of item j on component m, imf is the component score of person i on component m. The 

DINA IRF can be written in a similar manner, 
**),,|1( imm jmij fgsXp  

      (4)
 

Asterisks indicate the parameters are in the raw score model (equation 4). Parameters in the standard score model 

are in equation 3 where the parameters are as defined previously. jm equals 1 when the skill set corresponding to 

factor m is the minimal skill set sufficient for the solution of item j; else it is zero. If the data satisfy the DINA 

model, then jm
* equals )1( js  when the skill set corresponding to factor m is the minimal skill set sufficient for 

the solution of item j; else it is zero. imf *
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depending on whether the examinee possesses the 

required skills for an item. With this reformulation,  
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. The parameters in the raw score model (equation 

4) can be related to those in the standard score model (equation 3) as follows: 
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for a component m, and  

*

.mf
 is the mean component score for factor m. 

*ˆ
m

appears in both the numerator and the 

denominator of jm
 and imf

 because the variance of the components is 1 for standardized scores.  

 

In equation 3, a component corresponds, not necessarily to a single skill, but a skill set and the items loading on the 

component are those for which the set is the minimally required combination of skills for the items. The components 

should follow a simple structure. As an example, if a test measures three skills, the skills corresponding to all 

combinations of the three skills are shown in Table 1. Using the DINA model, the resulting component scores can be 

represented as shown in Table 2. The probability of a correct response is then simply f
f . 

Table 1: Component Loadings 

Loadings (dichotomized) 

 

Skill 

Combinations 

(Components) 

Items Measuring 

Skill Set 1 

Items Measuring 

Skill Set 2 

Items Measuring 

Skill Set 3 

Items measuring 

Skill Set4 

Items Measuring 

Skill Set 5 

Items Measuring 

Skill Set 6 

Items measuring 

Skill Set 7 

Item1 1 
 

0 0 0 0 0 0 

Item2 2 0 
 

0 0 0 0 0 

Item3 3 0 0 
 

0 0 0 0 

Item4 12 0 0 0 41 s  0 0 0 

Item5 13 0 0 0 0 51 s  0 0 

Item6 23 0 0 0 0 0 61 s  0 

Item7 123 0 0 0 0 0 0 71 s  

 

 
Table 2: Component Scores 

Component Scores 

 

Skill Combinations 

Possessed Component 1 Component 2 Component 3 Component 4 Component 5 Component 6 Component 7 

Person1 (1) 1 
  

4

4

1 s

g


 5

5

1 s

g


 6

6

1 s

g


 7

7

1 s

g


 

Person2 (2) 
 

1 
 

4

4

1 s

g


 5

5

1 s

g


 6

6

1 s

g


 7

7

1 s

g


 

Person3 (3) 
  

1 4

4

1 s

g


 5

5

1 s

g


 6

6

1 s

g


 7

7

1 s

g


 

Person4 (1,2) 
   

1 5

5

1 s

g


 6

6

1 s

g


 7

7

1 s

g


 

Person5 (1,3) 
   

4

4

1 s

g


 1 6

6

1 s

g


 7

7

1 s

g


 

Person6 (2,3) 
   

4

4

1 s

g


 5

5

1 s

g


 1 7

7

1 s

g


 

Person7 (1,2,3) 
   

4

4

1 s

g


 5

5

1 s

g


 6

6

1 s

g


 1 
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3. Analysis 

 

Binary examinee responses from the simulated and real data were used to compute item correlations that were 

analyzed via principal components analysis (PCA) with promax rotation (kappa=4) to identify the skill sets. 

Components were extracted until every item loaded on only one  rotated component. A Q-matrix based on the 

components analysis was then constructed. The simulated Q-matrix is shown in Table 3. The resulting simple 

structure from the components analysis of the simulated responses is shown in Table 4. It can be seen that based on 

this Q-matrix, there are 5 skill combinations hence 5 components. More specifically, component 1 corresponds to 

skill 1 because only items measuring skill 1 load on it. The same logic applies to the other components: component 2 

represents skill 2; component 3 represents skills 1and 2; component 4 corresponds to skills 2 and 3; and finally, 

component 5 corresponds to skill 3. The results indicate that the method fully recovered the original Q-matrix used 

to simulate the data. This was to be expected because the data were simulated and the Q-matrix was known. 

 

Table 3: The Q-matrix (Simulation)

K1 K2 K3

1 0 0

1 0 0

1 0 0

1 0 0

1 0 0

0 1 0

0 1 0

0 1 0

0 1 0

1 1 0

1 1 0

1 1 0

1 1 0

1 0 0

1 0 0

1 0 0

1 0 0

0 1 1

0 1 1

0 1 1

0 1 1  
 

The original Q-matrix for the fraction subtraction data from de la Torre and Douglas (2004) is shown in Table 5. 

The items measure eight attributes: 1) Convert a whole number to a fraction, 2) Separate a whole number from a 

fraction, 3) Simplify before subtracting, 4) Find a common denominator, 5) Borrow from a whole number, 6) 

Column borrow to subtract the second numerator from the first, 7) Subtract numerators, and 8) Reduce answers to 

the simplest form. Using a sample of n=136 for the components analysis, the simple structure obtained is shown in 

Table 6. Because with real data there is skills overlap, each of the items loading on a component was examined to 

determine the skills they measure. Using these skills, a Q-matrix is then constructed. The components analysis 

resulted in 6 skills for the fraction subtraction data as shown in Table 7. These skills were 1) borrowing, 2) subtract 

numerators, 3) subtract whole numbers, 4) find a common denominator, 5) subtract a fraction from itself, and 6) put 

fraction into proper form. The next steps are to perform a confirmatory analysis to test how accurately the 

constructed Q-matrix classifies examinees into mastery/non-mastery classes. Preliminary findings indicate improved 

classification accuracy. 
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Table 5: Fraction Data Q-matrix from de la Torre and Douglas (2004)

K1 K2 K3 K4 K5 K6 K7 K8

Item 1 0 0 0 1 0 1 1 0

Item 2 0 0 0 1 0 0 1 0

Item 3 0 0 0 1 0 0 1 0

Item 4 0 1 1 0 1 0 1 0

Item 5 0 1 0 1 0 0 1 1

Item 6 0 0 0 0 0 0 1 0

Item 7 1 1 0 0 0 0 1 0

Item 8 0 0 0 0 0 0 1 0

Item 9 0 1 0 0 0 0 0 0

Item 10 0 1 0 0 1 0 1 1

Item 11 0 1 0 0 1 0 1 0

Item 12 0 0 0 0 0 0 1 1

Item 13 0 1 0 1 1 0 1 0

Item 14 0 1 0 0 0 0 1 0

Item 15 1 0 0 0 0 0 1 0

Item 16 0 1 0 0 0 0 1 0

Item 17 0 1 0 0 1 0 1 0

Item 18 0 1 0 0 1 1 1 0

Item 19 1 1 1 0 1 0 1 0

Item 20 0 1 1 0 1 0 1 0

Skills
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Table 6: Components Solution for the Real Data 

                     The Rotated Matrix 

 

Component 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 

V1 0.21 0.841 0.071 0.064 0.087 -0.176 -0.035 -0.037 -0.053 -0.046 -0.115 0.211 -0.073 

V2 -0.045 0.831 -0.045 -0.082 -0.012 0.165 -0.017 0.103 -0.034 0.06 0.065 -0.027 0.077 

V3 -0.184 0.959 0.028 -0.099 -0.077 0.016 0.005 -0.04 0.049 0.109 0.09 0.003 0.083 

V4 0.102 0.055 0.026 0.036 0.102 -0.024 0.039 -0.072 0.066 -0.053 0.899 -0.096 0.014 

V5 0.025 0.018 0.012 0.012 0.046 -0.015 0.023 0.967 0.014 0.007 -0.073 -0.022 0.015 

V6 -0.002 0.145 0.003 0.064 0.01 0.07 0.056 -0.02 0.193 -0.144 -0.085 0.85 -0.009 

V7 0.052 0.15 0.648 0.193 -0.021 0.073 -0.011 0.022 -0.193 0.175 0.071 -0.052 -0.177 

V8 -0.053 -0.02 -0.01 -0.019 0.99 0.009 -0.022 0.045 0.006 -0.011 0.096 0.01 -0.011 

V9 -0.081 -0.108 0.009 0.986 -0.018 0.014 -0.021 0.011 0.035 0.048 0.033 0.066 0.088 

V10 0.846 0.05 0.091 0.034 -0.081 0.049 -0.004 0.055 0.158 -0.08 0.039 -0.26 0.005 

V11 0.94 -0.019 -0.15 -0.03 -0.108 -0.052 -0.028 0.078 -0.091 -0.074 0.219 0.229 -0.059 

V12 -0.019 -0.034 0.028 -0.023 -0.023 -0.014 0.981 0.024 -0.008 0.02 0.041 0.062 -0.012 

V13 0.092 0.102 -0.007 0.093 -0.012 -0.049 -0.012 0.016 -0.017 -0.083 0.015 -0.011 0.91 

V14 0.04 0.008 -0.006 0.014 0.008 0.988 -0.013 -0.013 0.036 -0.098 -0.024 0.069 -0.046 

V15 0.034 0.082 1.007 -0.008 0.03 -0.044 0.064 -0.03 0.109 -0.231 -0.067 -0.065 0.018 

V16 0.053 -0.015 -0.003 0.035 0.007 0.038 -0.008 0.013 0.788 0.217 0.067 0.215 -0.018 

V17 0.111 0.112 -0.066 0.047 -0.01 -0.088 0.016 0.006 0.186 1.003 -0.046 -0.142 -0.076 

V18 0.574 0.022 -0.034 0.027 0.108 0.115 0.118 -0.091 -0.168 0.272 -0.117 -0.009 0.148  

V19 -0.029 -0.189 0.693 -0.144 -0.061 0.002 -0.068 0.059 -0.027 0.244 0.11 0.201 0.124 

V20 0.802 -0.121 0.161 -0.119 0.076 0.011 -0.047 -0.062 0.095 0.135 -0.096 0.014 0.057 

 

 
Note: Extraction Method: Principal Component Analysis.   Rotation Method: Promax with Kaiser Normalization.
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Table 7: Reconstructed Q-matrix for the Fraction Subtraction Data

K1 K2 K3 K4 K5 K6

Item 1 0 1 0 1 0 0

Item 2 0 1 0 1 0 0

Item 3 0 1 0 1 0 0

Item 4 1 0 0 0 1 0

Item 5 0 1 1 1 0 1

Item 6 0 1 0 0 0 0

Item 7 1 1 0 0 0 0

Item 8 0 0 0 0 1 0

Item 9 0 1 1 0 0 0

Item 10 1 1 1 0 0 0

Item 11 1 1 1 0 0 0

Item 12 0 1 0 0 0 1

Item 13 1 1 0 1 1 0

Item 14 0 1 1 0 1 0

Item 15 1 1 0 0 0 0

Item 16 0 1 1 0 0 0

Item 17 1 1 1 0 0 0

Item 18 1 1 1 0 0 0

Item 19 1 1 0 0 0 0

Item 20 1 1 1 0 0 0

Skills

 
4. Discussion 

 

The components analysis method for Q-matrix development appears to be a viable and useful step in generating a Q-

matrix when skill sets are measured by more than one item. Once items have been developed by content specialists, 

these items should be pilot tested and a task analysis using components analysis conducted to finalize the Q-matrix 

before items are used operationally. A caveat is that items must be designed to be diagnostic of specific skills 

covering narrow content areas with a sufficient number of items measuring each skill set. In such circumstances, the 

components analysis method can be a powerful tool for augmenting theory in the development of the Q-matrix.  

 

The component representation of items fitting the DINA model and the DINA model representation itself are based 

on different definitions of a “dimension.”  A dimension in the components representation corresponds to a set of 

skills that are necessary and sufficient for a high probability of passing the item. A dimension in the DINA model 

corresponds to a single skill that is necessary, but not necessarily sufficient by itself, for a high probability of passing 

the item. This mismatch between the definitions of a dimension means no one-to-one match between components and 

DINA dimensions. Still, if there are multiple items corresponding to each (or most) skill sets, a components solution, 

in combination with theory and content expert knowledge, can be a useful exploratory tool for deriving a Q-matrix. 

 

In summary, the process of deriving a Q-matrix described in this study begins by conducting a components analysis 

on binary examinee responses. The items loading on each of the components are examined to identify blocks of items 

with the same skill set. If the components solution is sensible in terms of the cohesiveness of the skill sets measured 

by the items that load on each component, the Q-matrix is then constructed. The constructed Q-matrix has a 

dimension for each skill identified in the components solution. A confirmatory analysis is then conducted to test the 

performance of the constructed Q-matrix in examinee classification accuracy. Because CDA is heavily reliant on the 

correct specification of the Q-matrix (DeCarlo, 2011), the exploratory technique investigated in this study has 

important educational implications. The proposed technique complements theory in Q-matrix development to ensure 

that the Q-matrix is a valid representation of the skills that a test intends to measure, hence valid skills scores. These 

scores, in turn, can help improve classroom instruction because teachers can individualize instruction on a student-

by-student basis. Improved classroom instruction that is learner-centered should lead to higher academic 

achievement, which is the ultimate goal of education. 
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